

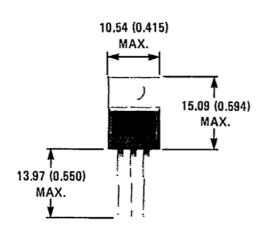
50 Volt, 0.1 Ohm HEXFET

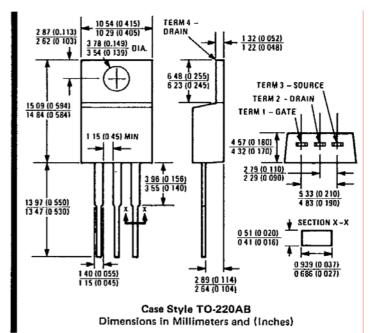
TO-220AB Plastic Package

The HEXFET technology has expanded its product base to serve the low voltage, very low RDS(on) MOSFET transistor requirements, International Rectifier's highly efficient geometry and unique processing of the HEXFET have been combined to create the lowest on resistance per device performance, in addition to this feature all HEXFETs have documented reliability and parts per million quality I

The HEXFET transistors also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio are operated from low voltage batteries, such as automotive, portable equipment, etc.


Product Summary


Part Number	V _{DS}	R _{DS(on)}	ID
IRFZ20	50V	0.10Ω	15A
IRFZ22	50V	0.12Ω	14A

Features:

Extremely Low R_{DS(on)} Compact Plastic Package Fast Switching Low Drive Current Ease of Paralleling Excellent Temperature Stability Parts Per Million Quality

CASE STYLE AND DIMENSIONS

Absolute Maximum Ratings

	Parameter	IRFZ20	IRFZ22	Units
V _{DS}	Drain-Source Voltage	50	50	V
V _{DGR}	Drain-Gate Voltage (R_{GS} = 20K Ω)	50	50	V
I _D @T _C =25	Continuous Drain Current	15	14	А
I _D @ Tc=100	Continuous Drain Current	10	9.0	А
I _{DM}	Pulsed Drain Current	60	56	A
V_{GS}	Gate –Source Voltage	±20		V
P _D @ Tc=25	Max. Power Dissipation	40 (See Fig. 14)		W
	Linear Derating Factor	0.32 (See Fig. 14)		W/K
I _{LM}	Inductive Current, Clamped	(See Fig. 15 and 10	Α	
		60	56	
TJ	Operating Junction and	-56 to 150		
Tstg	Storage Temperature Range			
	Lead Temperature	300 (0.063 in. (1.6r		

Electrical Characteristics @ Tc=25 (Unless Otherwise Specified)

Parameter	Туре	Min.	Тур.	Max.	Units	Test Conditions	
BV _{DSS} Drain-Source Breakdown Voltage	IRFZ20	50	-	-	V	V _{GS} =0V	
	IRFZ22	50	-	-	V	Ι _D =250μΑ	
V _{GS(th)} Gate Threshold Voltage	ALL	2.0	-	4.0	V	V _{DS} =V _{GS} , I _D =250µA	
I _{GSS} Gate-Source Leakage Forward	ALL	-	-	500	nA	V _{GS} =20V	
I _{GSS} Gate-Source Leakage Reverse	ALL	-	-	-500	nA	V _{GS} =-20V	
I _{DSS} Zero Gate Voltage Drain Current	IRFZ20	-	-	250	μA	V _{DS} =Max. Rating, V _{GS} =0V	
	IRFZ22	-	-	1000	μA	V _{DS} =Max. Rating x 0.8, V _{GS} =0V, Tc=125	
R _{DS(on)} Static Drain-Source On-State Resistance	IRFZ20	15	-	-	А	V _{DS} >I _{D(on)} x R _{DS(on)max} , V _{GS} =10V	
	IRFZ22	14	-	-	А		
gfs Forward Transconductance	ALL	-	0.080	0.100	Ω	V _{GS} =10V, f _D =9.0A	
Ciss Input Capacitance	ALL	-	0.110	0.120	Ω		
Coss Output Capacitance	ALL	5.0	6.0	-	S(Ω)	V _{DS} >I _{D(on)} x R _{DS(on)max} , V _{GS} =9.0V	
Crss Reverse Transfer Capacitance	ALL	-	560	850	pF	V _{GS} =0V, V _{DS} =25V, f =1.0MHz	
td(on) Turn-On Delay Time	ALL	-	250	350	рF	See Fig. 10	
tr Rise Time	ALL	-	60	100	рF		
td(off) Turn-Off Delay Time	ALL	-	15	30	ns	V _{DD} ≈25V, I _D =9.0A, Zo=50Ω	
tf Fall Time	ALL	-	45	90	ns	See Fig. 17	
Qg Total Gate Charge	ALL	-	20	40	nC	(MOSFET switching times are	
(Gate-Source Plus Gate-Drain)						essentially independent of operating	
Qgs Gate-Source Charge	ALL	-	15	30	nC	temperature.)	
Qgd Gate – Drain ("Millar") Charge	ALL	-	12	17	nC	VGS=10V, ID=20A, VDS=0.8Max. Rating.	
L _D Internal Drain Inductance	ALL	-	9.0	-	nC	See Fig. 18 for test circuit, (Gate charge is	
		-	3.0	-	nC	exxentially independent of opwerting temperature.)	
Ls Internal Source Inductance	ALL	-	3.5	-	nH	Measured from the Modified contact screw on tab to MOSFET symbol	
Ls		-	4.5	-	nH	center of diashowingtheMeasured from the draininternaldevice	
						lead, 6mm (0.25 in.) from package to center of die.	
		-	75	-	nH	Measured from the source lead, 6mm (0.25in.) from package to source bonding pad.	

Thermal Resistance

R _{thJC}	Junction-to-Case	ALL .	-	-	3.1	12	K/W			
RthCS		ALL	-	1.0	-	K/W		Mounting surface flat, smooth, and greased.		
R thJA	Junction-to-Ambient	ALL .	-	-	80	K/W		Typical socket Mount		
Source-Drain Diode Ratings and Characteristics										
ls	Continuous Source Current	IRFZ	Z20	-	-	15	А	Modified MOSFET symbol		
	(Body Diode)	IRFZ	Z22	-	-	14	А	showing the integral reverse		
I _{SM}	Pulse Source Current	IRF2	20	-	-	60	А	P-N junction rectifier.		
	(Body Diode)	IRF2	22	-	-	56	А	o -1		
V_{SD}	Diode Forward Voltage	IRF2	20	-	-	1.5	V	Tc=25 , I _S =15A, V _{GS} =0V		
		IRF2	22	-	-	1.4	V	Tc=25 , I _S =14A, V _{GS} =0V		
t _{ff}	Reverse Recovery Time	ALL		-	100	-	ns	T _J =150 , I _F =15A, dI _F /dt=100A/μs		
Q_{RR}	Reverse Recovered Charge	ALL		-	0.4	-	μC	T _J =150 , I _F =15A, dI _F /dt=100A/μs		
ton	Forward Turn-on Time	ALL		Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{s}+L_{D}$						

T_J=25 to 150 .

Pulse Test: Pulse width \leq 300µs, Duty Cycle \leq 2%.

Repetitive Rating: Pulse width limited by max. junction temperature.

See Transient Impedance Curve (Fig. 5).

K/W = /W

W/K=W/

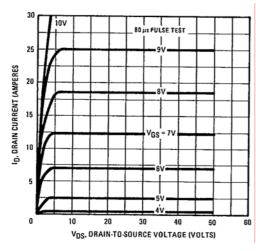


Fig. 1-Typical Output Characteristics

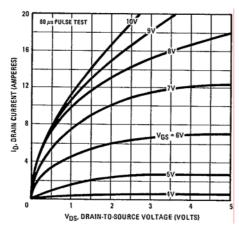


Fig.3 – Typical Saturation Characteristics

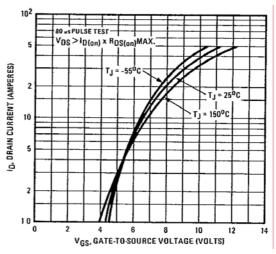
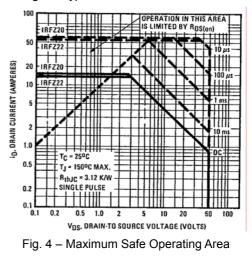
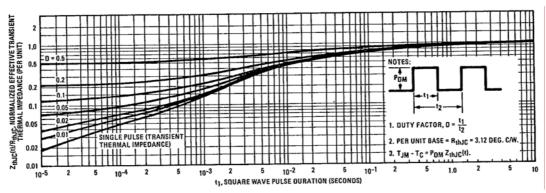




Fig. 2 – Typical Transfer Characteristics

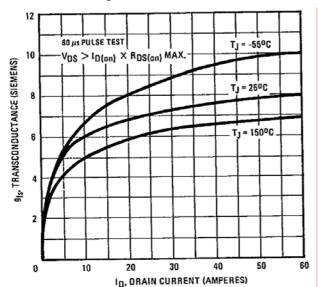


Fig. 6 Typical Transconductance Vs. Drain Current

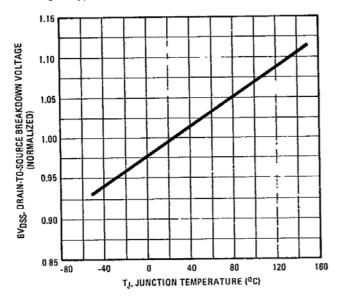


Fig. 8 – Breakdown Voltage Vs. Temperature

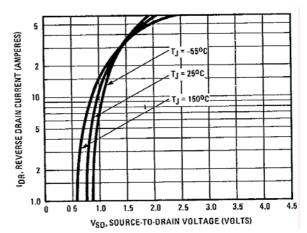


Fig. 7 Typical Source-Drain Diode Forward Voltage

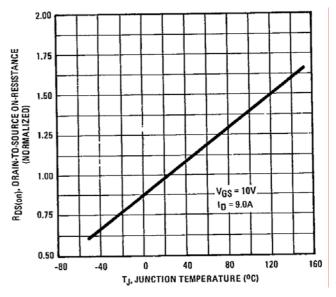
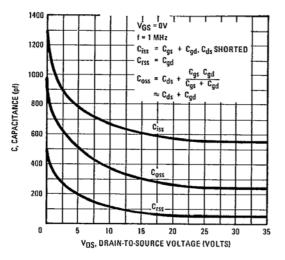
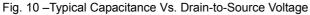




Fig.9 – Normalized On- Resistance Vs. Temperature

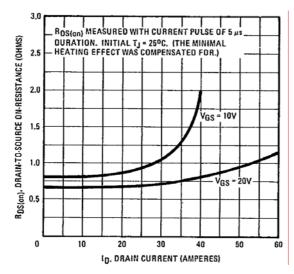


Fig. 12 - Typical On-Resistance Vs. Drain Current

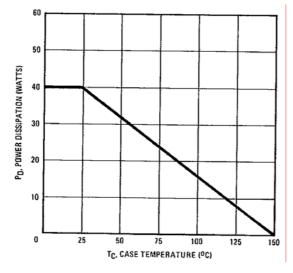
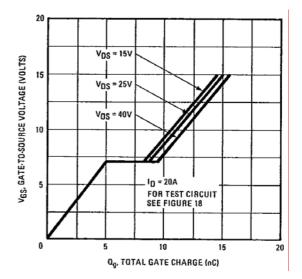
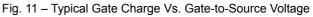




Fig.14 – Power Vs. Temperature Derating Curve

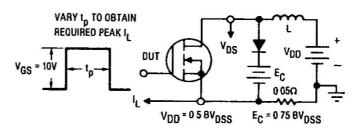


Fig. 15 – Clamped Inductive Test Circuit

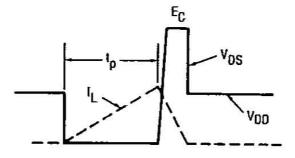


Fig. 16 - Clamped Inductive Waveforms

+V_{DS} (ISOLATED SUPPLY)

Vos o

% PER 1000 HRS

0.01

0.001

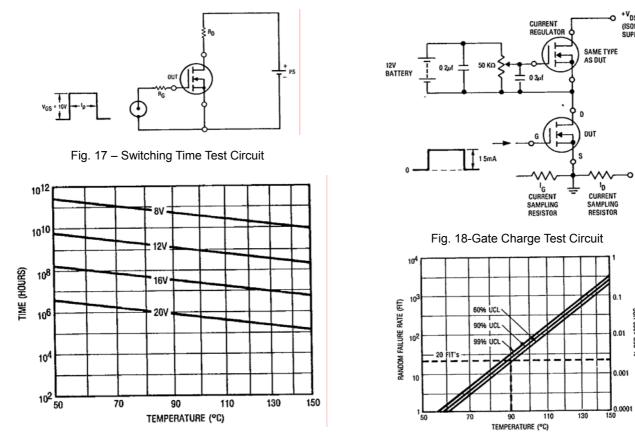
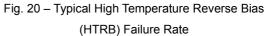



Fig. 19 – Typical Time to Accumulated 1% Failure

